Asteroid Occultation Ephemeris

Tomasz Kluwak Warsaw, April 28th , 2019

Asteroid Occultation Ephemeris

Asteroid Occultation Prediction Process Overview

Source: http://www.asteroidoccultation.com/

Occultation Prediction Software

Occult 4 Occultation Prediction Software by David Herald - regular update - current version: 4.6.7.2 (21.04.2019) - free software

http://www.lunar-occultations.com/iota/oc cult4.htm

Occultation Prediction Software

What one needs to know, to predict an occultation?

- asteroid position, movement and physical characteristic
- star position
- observer positions

Observer position

- Observer position in 3D
 - WGS-84 (World Geodetic System longitude, latitude, elevation)
 - Reference coordinate system used by GPS
 - High accuracy and easy of use
- Uncertainty of observer position is not a source of occultation uncertainty any more.

source: Astrometric accuracy during the past 2000 years, Erik Høg, Niels Bohr Institute, Copenhagen (2017)

Catalog	Stars number	Limit (mag)	Mean epoch	Position uncertainty ×0.001"	Proper motion uncertainty ×0.001"/year	Parallax uncertainty ×0.001"
Tycho-2	2.5 mln	11.5	1991.5	60	2.5	
UCAC-4	113.8 mln	16.5	2000	18 (15-100)	4	
UCAC-5	107 mln	16.5	2001	10-70	1-2 (<15mag) 5 (<16mag)	
URAT-1	228.3 mln	18.5	2013.4	5-40	5-8	4.3 – 10.8
Gaia DR2	1 300 mln	21	2015.5	2 (20mag)	0.06 (<15mag) 0.2 (17mag) 1.2 (20mag)	0.04 (<15mag) 0.1 (17mag) 0.7 (20mag)

- An example: May 28th, 2019, (225) Henrietta occulting TYC 0355-00548-1 (~10mag)
- Asteroid diameter
 0.082" (white ring)

- Uncertainties of Gaia DR2 (G=20 mag)
 - position 0.002"
 - Proper motion 0.0012"/year
 - parallax 0.0007"
- Observed occulting asteroid typical size: 0.01" 0.1"
- After Gaia DR2 release uncertainty in star position is not a significant source of occultation uncertainty any more.
 Exception: binary and multiple systems.

Asteroid orbit determination

- Uncertainty of asteroid's state vector (position and velocity) comes from orbit determination uncertainty and non-gravitional factors (constant or temporary)
- Source of orbit determination uncertainty:
 - Astrometry inaccuracy
 - Measurement uncertainty (position and time)
 - Star catalogs uncertainty (old observations are not re-reduced with Gaia!)
 - Small observation number
 - Short observation arc
- Non-gravitional factors
 - Difficult to foresee
 - Need fresh observations

Asteroid orbit determination

FIND_ORB Orbit Determination Software		_		\times
Open Perturbers: Merci Mars Uran	Epoch		Abo	out
□ Venu: □ Jupite □ Nept □ Earth □ Saturi □ Pluto	R1: 1 R2: 1	-	<u> </u>	step
Moon Asteroids		AU	⊻aisala	
			Auto	<u>A</u> uto-Solve
Orbital elements will appear here after you open a file, select an object from it, and an orbit is computed.			Save <u>R</u> e	esiduals
Click in this area to toggle between orbital elements	Sa <u>v</u> e elements			
and extra details (state vectors, MOIDs, etc.)		<u>E</u> pher	Ephemeris	
			<u>S</u> et	tings
			Monte	Carlo
			Stat R	langing
			Sim	ple <u>x</u>
			<u>G</u> auss	
			Worst o <u>b</u> s	
			Filter obs	
			Logg	le Obs
			Set	Sigma(s)
				Exit

Software:

Find_Orb Orbit Determination Software by David Herald

- regular update
- last update: 18.03.2019
- free

https://www.projectpluto.com/find_orb.htm

Physical properties and occultation

- Size
- Shape and rotation
- Binary and multiple systems

Asteroid size

(41) Daphne – image from adaptative optic (source: Durech, 2015).

- For most no direct data exists
- Usually estimated using indirect methods, observation techniques (photometry, spectroscopy, polarimetry, thermal radiation etc.) and theoretical assumptions
- Asteroid size determines width of occultation path

Asteroid shape and rotation

(25143) Itokawa model; Bartczak, Marciniak (2011).

- Asteroid shape and rotation
 - In most cases unknown
 - For some shape model has been determined based mainly on many years' photometry observations
 - Only few are with direct observations (spacecraft, radar, adaptative optic)
 - Typical rotation period (for size>150m): 2 to hundreds hours
- Non-spherical shape can affect an occultation.

Binary and multiple asteroids

(90) Antiope – double asteroidconsisting of two almost-equally sized bodies (phot.W.M. Keck Observatory, 2000).

- As of Feb 2019, 352 asteroids (and TNOs) are confirmed multiple systems
- An estimated 2% Main Belt asteroids and 11% have satellite or satellites
- In most of the known multiple systems satellites are much smaller then main body
- However... see left. Where is photometry center?
- (90) Antiope both components max. separation is 0.14".

Binary and multiple asteroids

(90) Antiope – occultation on July 19th, 2011. Non-occultated belt (yellow) between both components is app. 28 km wide. (phot. wikipedia)

Occultation uncertainty

Example 1:

- Occultation on May 11th, 2019; asteroid: (449) Hamburga
- Main Belt asteroid
- Observed since Oct 1899 (120 years, 49 oppositions)
- 2797 astrometry observations in MPC, including:
 - 1589 since 2010
 - 356 for last 12 months

Predictions for May 11th, 2019; (449) Hamburga

FO: all observations

FO: obs. since 2010

FO: obs. Last 12 mnths

Minor Planet Center

S. Preston

Occultation uncertainty

Example 2:

- Occultation on March 18th, 2019, TNO (38628) Huya
- Trans-Neptunian Object
- Observed since April 1996 (23 years, 19 oppositions)
- 316 astrometry observations in MPC, including:
 - 166 since 2010 roku
 - 30 for last 12 months
- Additional 179 observations in 2013-2019 by LuckyStar (not published earlier)

Predictions for March 18th, 2019; (38628) Huya

Orbit determined from last year astrometry only.

Orbit determined from all available astrometry.

Orbit determined from 2010-2019 astrometry.

Orbit determined from all available astrometry with outliers rejected.

Predictions for March 18th, 2019; (38628) Huya

Orbit according to JPL Horizon.

Orbit according to LuckyStar – October 2018.

Orbit according to Minor Planet Center.

Orbit according to LuckyStar – March 13th, 2019.

Predictions & results for March 18th, 2019 (38628) Huya

Occultation prediction based on orbits elements derived by LuckyStar (March, 13th).

Red star – positive results Black star – negative results

March 18th, 2019 occultation; (38628) Huya

Ocultatia stelei TYC 5061-513-1 de catre asteroidul trans-neptunian Huya

Huya occultation 18.03.2019

265 wyświetleń

🧊 9 📕 0 🏕 UDOSTĘPNIJ ≕+ ZAPISZ ...

https://www.youtube.com/watch?v=jOFC_637jmo